01 Dec 2022

Resource conservation and sustainable development in the metal cutting industry within the framework of the green economy concept: An overview and case study


Authors :- Kshitij G., Khanna N., Yildirim C.V., Dagli S., Sarikaya M.
Publication :- Sustainable Materials and Technologies, Volume 34, December 2022, e00507

The metal cutting industry has an important role in the growth of the global economy. In this industry, while research is made on factors such as cutting tool, cooling/lubrication environments, improved cutting parameters, etc., for increased productivity, serious efforts are also made to obtain environmentally friendly and healthy processes. Based on recent developments in tool materials, cutting speeds have increased significantly in machining operations. However, the increased temperatures with increasing cutting speeds have also reduced productivity and caused resource and product losses. The use of cutting fluids, especially in the machining of superalloys, has a vital task in reducing the problems. However, petroleum-based cutting fluids, which are still frequently used and have an important share in the industry, do not comply with the concept of a green economy due to environmental effects and costs. For this reason, the use of sustainable cutting fluids and optimum parameters in metal cutting industry processes has become a necessity. From this perspective, this study was carried out in two stages. In the first stage, the outputs of the metal cutting industry were examined within the scope of the principles of green economy. In the second stage, a case study was then conducted involving the machining of Inconel 718 and Ti6Al4V alloys at different cutting speeds and under LCO2. In the case study, critical outputs, both from an economic and sustainability point of view, namely cutting tool wear, surface roughness, specific energy consumption, machining costs and carbon emissions are examined. The results obtained in the machining of both materials were compared with each other. Total cost and carbon emissions can be reduced by up to 35% and 7%, respectively, under the appropriate parameter combination and LCO2 cooling conditions.

DOI Link :- https://doi.org/10.1016/j.susmat.2022.e00507