07 Feb 2024

Comparative analysis of different machine vision algorithms for tool wear measurement during machining


Authors :- Makhesana M.A.; Bagga P.J.; Patel K.M.; Patel H.D.; Balu A.; Khanna N.
Publication :- Journal of Intelligent Manufacturing, Springer 2024

Automatic tool condition monitoring becomes crucial in metal cutting because tool wear impacts the final product’s quality. The optical microscope approach for assessing tool wear is offline, time-consuming, and subject to measurement error by humans. To accomplish this, the machine must be stopped, and the tool must be removed, which causes downtime. As a result, numerous research attempts have been made to develop robust systems for direct tool wear measurement during machining. Therefore, the proposed work focused on developing a direct tool condition monitoring system using machine vision to calculate tool wear parameters, specifically flank wear. The cutting tool insert images are collected using a machine vision setup equipped with an industrial camera, bi-telecentric lens, and a proper illumination system during the machining of AISI 4140 steel. The comparative analysis of image processing algorithms for tool wear measurement is proposed under the selected machining environment. The wear boundary is extracted using digital image processing tools such as image enhancement, image segmentation, image morphology operation, and edge detection. The wear amount on the tool insert is extracted and recorded using the Hough line transformation function and pixel scanning. The comparison of results revealed the measurement accuracy and repeatability of the proposed image processing algorithm with a maximum of 6.25% and minimum of 1.10% error compared to manual measurement. Hence, the proposed approach eliminates manual measurements and improves the machining productivity.

DOI Link :- https://doi.org/10.1007/s10845-024-02467-3