
Optimized Hybrid Wind Power Generation with Forecasting

Algorithms and Battery Life Considerations

Abstract—A comparative study of several forecasting
schemes is performed on a dataset of a wind farm. The paper
presents a generalized economy optimization of the power
generated from a wind farm and batteries. These wind farms
are coupled to the electrical grid to supply amount of power
agreed upon a priori, irrespective of the associated penalty due
to inherent randomness in the wind. The solution is to have
an optimized wind forecasting technique such that the deficit
power is supplied by batteries and during period of surplus
power, the additional power is stored in the batteries. Economic
considerations include a consumption factor that evaluates the
depletion of battery life and assigns a dollar value to it.

I. INTRODUCTION

Wind energy is one of the cheapest and most abundant
renewable energy resource and is witnessing renewed efforts
to harness it. Wind farms consist of wind turbines spread
all over the farm that tap the wind energy and convert it
to electrical energy. A major factor affecting the tapping
of the wind energy is the randomness in the wind speed
which prevents supply of predefined power continuously to
the grid resulting in a difference of power that was to be
supplied and which is supplied. One of the ways to resolve
it is the use of improved wind forecasting schemes such
as weighted regression, linear fitting, neural network based
scheme, support vector regression and other such schemes,
along with batteries.[1]

Several wind power or wind speed forecasting methods
have been reported in the literature over the past few years.
Soman et al. summarize forecasting techniques associated
with wind power and speed, based on numeric weather
prediction (NWP), statistical approaches, artificial neural
network (ANN) and hybrid techniques over different time-
scales. An overview of comparative analysis of various
available forecasting techniques is discussed as well, and
further gives emphasis on the major challenges and problems
associated with wind power prediction. [10]

Wang et. al have focused on grid integration while ensur-
ing the batteries has continuous regulation ability. The nec-
essary storage capacity is determined from the requirements
of grid integration but an estimation of remaining battery
life is not provided.[7] A novel stochastic MPC controller is
established to improve the wind power dispatchability and
reduce fluctuations.[8] An overview of developments in the
principles and practical implementation of wind forecasting
is given. An accurate forecast of wind speed and power
generation can help the power system operators reduce
unreliability of electricity supply. Chang presents a literature

survey of the categories and methods of wind forecasting and
the future direction of wind forecasting.[9]

In the present study, Battery usage is optimized so as to
store the surplus energy or provide the shortfall to the grid
as the case may be. In certain forecast windows, especially
when the required charging or discharging of the battery is
large, paying the penalty may be better than using the battery.
Palmgren-Miner’s damage principles are used in this analysis
without the need of precise knowledge of the materials or
wind turbine blade structural properties.[11]

The proposed hybrid wind system consists of one or more
wind turbines in a wind farm coupled with multiple batteries.
A hybrid wind power system has a centralized controller
consisting of a dispatch regulator, energy storage Unit,
damage controller and penalty optimizer sections. Figure 1
describes a method of optimizing the wind power acquired
in one or more dispatch windows. The actual wind power
term represents the electrical power from the wind turbines.
The actual wind power data is the time series of data for the
different time slots within the dispatch window.

Fig. 1. Optimization of a Hybrid wind energy system.

The damage equivalent quantity (DEQ) indicates a depth
of discharge value for a predefined number of battery cycles
that is equal to its life consumption over a period of time.
The aim of the battery damage controller is to maintain
the DEQ as low as possible. Additionally, Consumption
equivalent (C) corresponding to the percentage of battery
life consumed is evaluated. The penalty to be paid if the
wind farm fails to supply the predefined amount of power
in a given dispatch window, is determined.



II. OPTIMIZATION OF A HYBRID WIND ENERGY SYSTEM

The forecasted power is calculated by employing multiple
forecasting schemes and the scheme that yields the mini-
mum difference of the actual and forecasted powers is then
determined for each dispatch window and the corresponding
battery consumption equivalent is ascertained. Power supply
to the grid uses a combination of actual wind power and
supplemental support from the batteries when needed.

By using the forecasted wind farm power and actual wind
power data, a difference value Ferr is expressed as
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where Fn is the forecasted wind farm power at time slot n
corresponding in the dispatch window, Wn is an actual wind
power, and N is the number of time slots within a dispatch
window. Lower the value of Ferr, greater is the reliability.

Selecting the most reliable forecasting scheme, and C is
imperative for a optimized hybrid wind farm. We evaluate
the penalty to the grid and balance it with life consumption
of battery units. Factors such as the cost and remaining
life of batteries, are critical. The next step determines the
battery state of charge for each time slot. A 0% state of
charge (or equivalently 100% depth of discharge) represents
a fully discharged battery, whereas 100% state of charge
indicates full charge. Using this value of depth of discharge,
we calculate DEQ which provides a sense of damage caused
to the battery life. The relation between number of cycles
and depth of discharge is studied as in Figure 2.

Fig. 2. S-N curve for a battery.

Using 1
m as the slope of the S-N curve and a random

number of cycles, we evaluate DEQ as
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where Si is depth of discharge, ni is number of cycles
corresponding to the depth of discharge, N is the number
of time slots.

If the point (NDEQ, DEQ) is located on left hand side of
the S-N curve, the battery still has useful life left. If the point
is located on the right hand side of the S-N curve, it is an
indication of battery failure. As shown in Figure 2, say the
point is on left hand side. To infer consumption equivalent,

we draw a horizontal line intersecting S-N curve at a point P .
From P we draw a perpendicular to the X-axis representing
the number of cycles. We can name the point of intersection
as Nlim which represents the maximum number of cycles
after which the battery will fail for a certain value of depth
of discharge. The consumption equivalent is evaluated as

C =
NDEQ

Nlim
, (3)

where Nlim = k (DEQ)−m, k = N (DOD)m, and DOD
is depth of discharge for N number of cycles.

The number of cycles in a certain duration can be eval-
uated by Rainflow counting Algorithm.[12] The number of
rainflow cycles is divided by Nlim = 104 to determine C.
We assume that all the batteries would have similar DEQ
and C value. Battery failure is indicated by the value C = 1,
and if C < 1, the battery has useful life remaining.

III. FORECASTING METHODS

We now employ different forecasting schemes and check
their effectiveness. We have taken the actual wind dataset
consisting of wind speed data every ten minutes for the entire
month of September 2016.[13] Taking the previous three
value of actual wind speeds, we forecast the wind speed for
the next ten minutes. In this way, we forecast the wind speed
for a complete day. The actual wind power is given by

w =
1

2
Aρv3Cp, (4)

where w is the power output, A(m2) is the swept area of the
wind turbine blades, ρ is the density of air and v is the wind
speed in m/sec, and Cp is the power coefficient. Numerous
forecasting methods have been used in recent years. In this
paper, we have employed Persistence method and ARMA
(Auto Regressive Moving Average) statistical method.

A. Persistence Algorithm Based Forecasting

The persistence method is the simplest solution for fore-
casting wind speed and is expressed as

v(t+ n) =
1

n

n−1∑
i=0

v(t+ i). (5)

We forecast the wind speed at time t+n by simply taking the
mean of actual wind speeds in n previous dispatch windows.
In this paper, we consider three previous dispatch windows
of 10min duration each (total of 30mins) to forecast the
wind speed for the next 10min dispatch window.

B. ARMA Model Based Forecasting

ARMA is a statistical method employed for forecasting,
and is characterized by values of p, d and q where p is
the order of Auto-Regression (AR), d is the degree of
differencing to make the model stationary and q is the order
of Moving-Regression (MA). The model is expressed as

y(t) =

p∑
i=1

ϕiyt−i +

q∑
j=1

θjet−i + ϵt, (6)



where ϕi represents the factor of stability of the variance,
i is the ith autoregressive parameter, θj is the jth moving
average parameter and ϵt is the error term at time t. In our
case we define d = 0 and hence we have only p and q terms.

The values of p, d and q are determined at the outset. We
considered the wind data for a one week period prior to the
day for which we need to forecast. The Autocorrelation and
partial auto-correlation for the model are determined. This
value is used to determine the Bayesian Information Criteria
which results in a matrix and the least value in the matrix
determines the values of p and q. The row of least value
represents p and the column represents the value of q. The
value of p and q were found to be 3 and 2 respectively.

Next, using Matlab or R we can find the value of estimates
for the sample data considering maximum likelihood. We
also determine the value of ϵt. The model in this case is

v(t) = 1.7521 vt−1 − 1.3663 vt−2 + 0.5872 vt−3

−0.7449 et−1 + 0.3847 et−2 + 0.1448. (7)

The model constructed from seven days data is then used
to forecast the wind speed for the following day. Figure
3 represents the actual wind speed compared to different
forecasting schemes employed.
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Fig. 3. Forecasting schemes compared with the actual wind speed.

In least error method, we forecast wind speed using
the scheme that gives the least error of forecast in each
dispatch window. Least Penalty method uses that forecasting
approach which results in the minimum penalty among all
the forecasting methods (ARMA and Persistence) in each
dispatch window.

IV. ECONOMY CONSIDERATIONS

Cost analysis is done for an optimized solution between
the operation of batteries and wind forecasting scheme
employed that provides most economic solution. When the
forecasted wind power estimates is greater than the actual
wind power, some penalty ($0.3 /kWh) is due to the grid op-
erator. Alternatively, supplementary power can be provided
from batteries. When wind speed drastically changes over
successive dispatch windows, charging/discharging damages
battery life, and so one is better off paying the penalty in
that period in order to optimize battery life consumption.

Using (4), actual power wa and forecasted power wf

are calculated for a dispatch window. We assume that the
batteries are identical and cost $605 each and the rating is
(2V, 2000A). The cost of penalty per unit and the cost of
power units are assumed to be identical and equal to $0.3
(may differ from one country to another). Broadly, there are
three methods to ascertain economical usage of resources.

A. Methodology 1

In this case, battery storage is not used and penalty is
paid routinely whenever there is shortfall in actual wind (wa)
over what was forecasted (wf ). Although, intuitively such a
scheme is not practical it still needs to be compared with
the proposed solutions. In a dispatch window, if for a given
forecasting scheme wf > wa, penalty corresponding to wf−
wa is to be paid to grid operator and if wf < wa no penalty
is due. The penalty to be paid in a particular dispatch window
with power shortfall, is given by

e1 =

{
0.3 (wf − wa), ifwf > wa,

0, otherwise,

The net penalty E1 for the entire duration of available data
(in this case a Month) is given by

E1 = 0.3
r∑

i=1

(wf − wa), (8)

where r represents the number of forecasting windows with
wf ≥ wa. Note that, the value of r is same for the
Methodologies 1 and 2 when the same forecasting technique
is applied, but changes with change in the forecasting
technique, as seen in Table I.

B. Methodology 2

Whenever the forecasted wind power estimate wf is
higher than the actual wind power wa, the difference wf−wa

is provided to the grid from the batteries, and the batteries
charge when wf < wa. Battery life depends on the number
of charging and discharging cycles. We consider the amount
of power required for battery charging or discharging over
a certain period, and accordingly select the battery power
rating, accounting for a safety margin. In this scenario, the
penalty is completely paid for with battery life for the four
forecasting methods as shown in Table I.

The remaining useful battery life in months is indicated
by the (1−C) factor. Life span of the batteries L(in yrs) is

L =
(1− C)N

12
,

where N represents the number of batteries required.

TABLE I
METHODOLOGY 2

Forecasting Methods Persistence ARMA Least Least
Penalty Error

C 0.131 0.141 0.146 0.145
N 450 313 400 300
L 32.57 22.39 28.46 21.38
r 2209 2275 1873 2237



We calculate the power to be supplied through the batter-
ies, and the cost E2 is given by

E2 = C N × 605× 0.3
r∑

i=1

(wf − wa). (9)

C. Methodology 3
In this methodology, in order to avoid large charging and

discharging of batteries, for a threshold wt, if wf−wa < wt,
then wf − wa is supplied from batteries. However penalty
is paid to the grid operator whenever wt − (wf − wa) >
0 equivalent to wt − (wf − wa) at ($0.3 /kWh). In this
study we consider two different thresholds wt = 100kW and
wt = 200 kW. Such dynamic threshold selection for different
dispatch windows enable cost optimization with prolonged
battery life and suitable dispatch failure penalty.

The life span Li(in yrs) for wt = 100, 200 kW and
Ni, i = 1, 2 number of batteries, is

Li =
(1− C)Ni

12
, i = 1, 2,

respectively. Battery useful life Li accesses long term vi-
ability of the methodology. Thresholds are set for overall
optimal cost.

TABLE II
METHODOLOGY 3

Methods Persistence ARMA Least Least
Penalty Error

wt C 0.131 0.141 0.146 0.145

100 kW+
N1 175 150 100 125
L1 12.67 10.73 7.11 8.90
r1 193 131 99 146

200 kW+
N2 250 175 163 125
L2 18.09 12.52 11.60 8.90
r2 27 22 32 43

We calculate the power to be supplied through the batter-
ies, and at other times the penalty that is to be paid, and the
combined cost E3i is given by

E3i = C Ni × 605× 0.3

(
η−ri∑
i=1

(wf − wa) +

ri∑
i=1

wt

)

+0.3

ri∑
i=1

(wt − (wf − wa)) , i = 1, 2, (10)

where η is the total number of dispatch windows in the
dataset considered, ri represents the dispatch windows with
wf − wa ≥ wt, η − ri represents the number of dispatch
windows with 0 ≤ wf − wa ≤ wt. In this study, η = 4465
(10 min duration of dispatches for a month long data).

Tables I and II indicate that the battery life is increased
by following Methodology 3 irrespective of the forecasting
strategy. Using (8)-(10), the economy comparison of the
three Methodologies is summarized in Table III which shows
the total operational cost of operation for the forecasting
schemes, a summation of cost of batteries, cost of charging
and discharging per month of a single wind turbine. The
results for all the techniques used to forecast indicate that
Methodology 3 is effective in driving down the overall cost.

TABLE III
TOTAL COST FOR A MONTH (IN $)

Methods Persistence ARMA Least Least
Penalty Error

E1 50200 41647 33936 34034
E2 38405 26776 35332 26499
E31 28486 23025 15915 18204

(wt = 100kW )
E32 27704 19650 17250 14000

(wt = 200kW )

From Table III, it is not conclusive as to which among
Least error or Least Penalty approaches is ideal. An opti-
mization technique to ascertain the ideal value of threshold
wt would be needed to address that issue decisively.

V. CONCLUDING REMARKS

A suitable dispatch regulator and forecasting scheme
should be employed for having minimal cost of operation of
hybrid wind energy system. Forecasting schemes like Per-
sistence algorithm and ARMA and variations of these such
as Least error and Least Penalty, are employed to forecast
the wind speed. Penalty is paid directly to the grid operator,
or with the help of batteries, or an optimal combination of
both. We find that the overall cost of operation in paying
the penalty is least in using the batteries up to certain cut-
off rating and to pay the additional penalty to grid operator.
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