Course No.	CE 205004
Course Title	Computational Hydraulics
Credits	L T P C 3 0 2 4
Prerequisites	Fluid Mechanics

Course contents:

Introduction

Understanding the turbulence characteristics of flow structure, Modelling theory, Mathematical classification of flows, Conceptualisation of building model, development and application of models.

Modelling water related flow

Governing Equations for 1-D and 2-D flow, Mathematical classification of flow equations, Dimensionless form of Equations, Solution of Ordinary differential equations and partial differential equations, Navier-Stokes equations, Saint-Venant equations, Characteristics forms of Saint-Venant equations.

Discretisation of fluid flow domain

Discrete solutions of equations, space discretisation – structure grids, unstructured grids, grid generation, physical aspects of space discretisation, Time discretisation.

Numerical Methods

Method of characteristics, Initial and Boundary conditions, Characteristics grid method, Method of specified intervals.

Finite Difference Methods

General concept, approximations of the first order derivation and higher order derivatives, Explicit finite difference schemes, Implicit finite difference schemes.

Finite Volume Methods: An overview

General concept, Approximation of surface integrals and volume integrals, Variables arrangement on the grids: collocated and staggered, discretisation of convective and diffusive fluxes, evaluation of the time derivative, boundary conditions.

Properties of Numerical Methods

Consistency, Stability, Convergence, Conservation, Boundedness, Realizability, Accuracy, Lax theorem of equivalence.

Introduction to Turbulence Modelling

Direct Numerical Simulation (DNS), Large Eddy Simulation (LES), Reynolds Averaged Navier Stokes Models.

References Books

- 1. Popescu, I. Computational Hydraulics: Numerical Methods and Modelling, IWA publishing.
- 2. Chaudhary M. H., Open-channel flow, Springer Publications.
- 3. Ferziger J. H., and Peric M., Computational Methods for Fluid Dynamics, Springer.

4. Nezu I., and Nakagawa H. Turbulence in Open Channel Flows. IAHR Monograph.