Ι	Course Code	PH 227001
II	Course Title	Advanced Magnetic Materials and Applications
III	Credits	LTPC
		3 1 0 4
IV	Prerequisites	A first course on modern physics and electromagnetics
	(if any)	
V	Course	Brajesh Tiwari
	Coordinator	
VI	Learning	After completion of the course students are expected to have learned the
	Outcome	fundamentals of magnetism and processes governing the physical properties
		of magnetic materials. Various magnetic measurement techniques and their
		functioning are essential part of the course. Students will also learn different
		applications of advanced magnetic materials based on their applications.
		From this course student can gain working knowledge of magnetism and
	~	various applications of magnetic materials.
VII	Course	1. Basics of Magnetism: Para and diamagnetism, metals and insulators,
	Contents	spin and orbital contributions, paramagnetism of 50 and 41 ions. Magnetic measurements: Faraday balance Vibrating sample
		magnetometer (VSM) Superconducting Quantum Interferometer
		Devise (SQUID) magnetometer
		II. Various forms of interactions: Direct exchange, superexchange, double
		exchange, RKKY interaction, dipolar interaction, Dzyaloshinskii-
		Moriya interaction
		III. Magnetic Ordering: Ferromagnetism, antiferromagnetism,
		Terrimagnetism: Curie-weiss Law, Mean field theory, excitations from $\nabla M = \pi^{3/2}$ by $\pi^{3/2}$ J
		quantum states, spin waves/ magnons $\frac{1}{M(0)} \sim T^{3/2}$, Bloch $T^{3/2}$ Law
		IV. Different form of magnetic energy: Dipolar, demagnetization,
		magnetostatic, magnetocrystalline anisotropy, space anisotropy.
		walls magnetic hysteresis Superparamagnetism Magnetoelectric
		coupling and multiferroics.
		V. Magnetoresistance: Spin dependent scattering/conduction. AMR, GMR
		CMR, TMR in multilayers/ thin films. Basics of magnetic recording,
		Spin valves, spin polarized transport/spintronics, spin Hall effect,
		magnetic skyrmions
VIII	Text books/	1. S. Blundell, Magnetism in Condensed Matter, Oxford University Press
	References	(2001)
		2. B. D. Cullity and C. D. Graham, Introduction to Magnetic Materials, 2 nd
		Edition, whey (2009) 3 J. M. D. Coev. Magnetism and Magnetic Materials. Cambridge (2010)
		5. 5. 141. D. Cocy, magnetism and magnetic materials, Cambridge (2010)
		4. Nicola A. Spaldin, Magnetic Materials: Fundamentals and Applications.
		Cambridge 2^{nd} edition (2011)
		5. David Jiles, Introduction to Magnetism and Magnetic Materials,
		Chapman and Hall (1991).
		6. C. Kittel, Introduction to Solid State Physics, Wiley, 8 th edition 2012