Ι	Course Code	MA 192003
II	Course Title	Probability and Random Processes
III	Credit Structure	L T P C 3 1 0 4
IV	Prerequisites (If any)	
V	Course Content	Sets and set operations; probability space, Additive and multiplicative
		laws of probability. Conditional probability and Bayes theorem;
		Combinatorial probability and sampling models. Random Variables;
		discrete and Continuous random variables, probability mass function,
		cumulative distribution function, probability density function,
		examples of random variables and Some standard distributions;
		Binomial, Poison, Uniform and Normal distributions. Generating
		functions and moments. Limit theorems, Strong and weak laws of
		large numbers, central limit theorem. Joint distributions, functions of
		one and two random variables. Joint moments, random vectors,
		Independence of random variables, correlation matrix, covariance
		matrix, Gaussian random vectors, scaling and translation, Standard
		Gaussian, Joint Gaussianity, linear transformation. Gaussian random
		vectors, Conditional distribution, densities and moments. Random
		processes, basic definitions; second-order statistics, Wide-sense
		stationarity and strict stationarity, Ergodicity. Power spectral density,
		Gaussian random processes, Noise modeling.
VI	References	1. Introduction to probability and statistics for engineers and
	itereneus	scientists; Sheldon M. Ross.
		 A first course in probability; Sheldon M. Ross.
		3. Stochastic processes; Sheldon M. Ross.
		4. Introduction to probability and statistics; Vijay K. Rohatgi,
		A. K. Md. Ehsanes Saleh.